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1. Introduction

The rapid growth of computer communication has motivated an
intense interest in packet switching radio techniques [1].
Furthermore, there is a growing need for computer communication
and information distribution in tactical military applications,
where spread spectrum waveforms must be uged in order to achieve
reliable operation in the precense of intentional interference
(jamming). As a result, a thorough investigation of spread
spectrum packet radio networks is necessary.

The bit error probability induced in frequency hopped spread
spectrum systems has been examined before [2]. In [2] the bit
error probability is computed for two different models of random
frequency hopping patterns. In the first model it is assumed that
each random frequency hopping pattern is a sequence of independent
random variables (i.e. memoryless frequency hopping patterns),
while in the second model it is assumed that each random frequency
hopping pattern is a first order Markov chain (i.e. Markov
frequency hopping patterns).

The computation of the packet error probability induced in
frequency hopped spread spectrum systems, which utilize memoryless
frequency hopping patterns has been examined before (([3],(4],([5]).
In this paper we are going to compute the packet error probability
induced in spread spectrum systems, which utilize Markov frequency
hopping patterns. What makes the problem difficult is that the bit

errors are not independent. Hence, we cannot extend the results in

(2], in a trivial way, in order to compute the packet error




probability. Nevertheless, some comparisons with the packet error

probability induced if we assume that the bit errors are

S T N ke

independent are going to be made.

l‘u.'v hY

The organization of the paper is as follows. In section 2 we

describe the model of our spread spectrum system. Then, in section

T

3 we present a method to compute the packet error probability i

A

induced in our system. In section 4 we utilize the numerical -9
results of section 3 and an educated conjecture to evaluate the
performance of our spread specrtum system. Finally, in section 5
we give a brief summary of the accomplishments of the paper, and

we discuss some extensions of the model presented in section 2.

2. The Model
The frequency hopping system will now be described. The ;

P channel time is divided into slots, and the users in the network

initiate their packet transmissions at the beginnings of slots.

The frequency spectrum is divided into g frequency bins and the

‘
s
-
¥
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packets are divided into M bytes each. Every user in the network
sends each of the M bytes of his packet at a frequency bin , which
is different from the frequency bin used by the previous byte, but
F equally likely to be any one of the remaining g-1 frequency bins
(Markov frequency hopping patterns). Furthermore, different users
in the network have statistically independent frequency hopping
patterns. We also assume that a packet consists of exactly one

codeword from a Reed-Solomon (RS) code for which up to e byte

errors can be corrected. A packet is declared successfully
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transmitted if at most e byte errors occur.

3. A method to compute the packet error probability

Let us assume that K (K22) packets are transmitted in the
same slot. These packets correspond to K different users in the
network. We assign indices to these packets (i.e. packet # 1,
packet # 2, .... packet # K). Let us also assume that the receiver
locks on to packet #%# 1. We say that the jth byte of packet # 1 is
hit if, during its reception by the receiver, at least one of the
other packets (i.e. packets # 2, # 3, ..... , # K) occupies the
same frequency bin that packet # 1 occupies. Let us now denote
by ,pe(K), the probability that packet # 1 is decoded incorrectly
by the receiver given that K-1 other packets interfere with
packet # 1. Our objective is to provide a method for the
computation of pe(K).

We denote by, { f% { 1<j<M }, the frequency hopping pattern
corresponding to packet # i (1<i<K). In figure 1 we show a
© realization of the K packet arrivals at the receiver site. It is

worth noting that the realization of packet arrivals in figure 1
corresponds to the worst possible case; in other words pe(K) is

¢ maximized when the realization of figure 1 occurs. This is true,
because with the realization of figure 1 , during the reception of
every byte of packet # 1 , all other K-1 interfering packets are
present. We will compute pe(K) for the realization of packet

arrivals depicted in figure 1. Furthermore, we will make the

pessimistic assumption, as in [3], that when a byte is hit a byte
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error results.

Let us now denote by, S(m,n); 1<n<M, mg<n, the number of bytes
from byte m to byte n of packet # 1 which are in error. Then,
M

P (K)= § : Pr(S(1,M)=1] (1)

i=e+1

We will compute first the packet error probability , P (K)
for K=2. In doing so, we will be able to describe the major points
of the methodology better. Then, we will discuss the steps
required to compute pe(K) for K23.

Case 1 . K=2.

It is obvious from (1) that, in order to find pe(2), we must
compute the Pr[(S(1,M)=i] for i=e+l,e+2,...,M . From the formula of

total probability we get:

Pr(S(1,M)=i]= E E Pr(s(1,M)=i/f. ‘Slvf '51) Pr (f 1 §)=

s —l (] —1

= E E Pr(s(1,M)=i/f. —sl, —si) q? (2)

s -1 s —1
We now state a proposition.

Proposition 1. For every M21 and igM the conditional probability,

Pr(S(l,M)=i/f1 1 f l), depends only on the following two events
1 2 Loy 1, 2
1)sl sy or 11)51#5l
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S
In other words Pr(S(l,M)=i/fl=s1,fi=si) does not depend on ;:
-5
1 2 1__2 1,2 i
the actual values of s, and Syr as far as, s,=s; or sl#sl. o
P Proposition 1 is proven in Appendix A.
Let us now define
1 .2 .
f.=(f.,£. 1<3igM 3
L ( K J) 3 (3)
P The proof of Proposition 1 is based on the following Lemma.

Lemma 1. The sequence { ij ; 1<j<M } is a Markov chain with

stationary transition probabilities.

ILemma 1 is also proven in Appendix A. Due to proposition 1

equation (2) becomes.

+ Pr(S(1,M)=i]= q t Pr(S(l,M)=i/f1=1,f§=l)+
+(1-q" 1y Pr(S(l,M)=i/f1=l,fi=2) (4)
A byproduct of the proof of proposition 1 is that the
P conditional probabilities, Pr(S(l,M)=i/f1=1,fi=1) and

Pr(S(l,M)=i/f1=1,f§=2), satisfy certain recurrent expressions

(see Appendix A page 16 for more details). We write these

P recurrent expressions in the sequel.
Pr(S(l,1)=0/f1=l,f§=1)=O (5a)
Pr(s(i,1)=1 f1"1 f2"l =1 5b

b (8(1,1)=1/£,=1,£f,=1)= (5b)

1 2
Pr(s(1,1)=0/£,=1,£,=2)=(q-2)/(q-1) (5¢)
1 2
b Pr(s(1,1)=1/f£,=1,£]=2)=1/(q-1) (5d)
_ 1 2
Pr(S(l,n)-—O/f1=1,f1=1)=O (6a)
12snsM




1

- . 1 2
Pr(S(l,n)=i/f1=1,f§=l)=(q-1) Pr(s(1,n-1)=i-1/£,=1,£7=1)+

;2<n<M, 0<ign

1

+(q-2) (g-1) " pr(S(l,n-1)=i-1/fl=1,f§=2) (6b)

2

pr(S(l,n)=0/f1=1,fi=2)=(q—2)2(q-1)' pr(S(l,n-1)=0/f1=1,f§=2) (7a)

;2<n<M

2

Pr(s(1,n)=i/f)=1,£2=2)=(g-2) (g-1) "

Pr(S(l,n—1)=i/fl=l,f§=1)+
;2<n<M, 0O<i<n

1

+(g-1) Pr(S(l,n-1)=i-1/fl=l,ff=2)+

2

+(g-2)%(gq-1) " Pr(S(l,n-1)=i/fl=1,fi=2) (7b)

1 Pr(S(l,n—l)=n—1/f1=1,f§=2) (7¢)

Pr(S(l,n)=n/f1=1,fi=2)=(q—l)_
;2<n<M ’

Based on expressions (5) through (7) we can compute
Pr(S(l,M)=i/f1=1,f§=l) and Pr(S(l,M)=i/f1=1,f§=2) for arbitrary M
and i<M as follows.

For M=1 all we need are expressions (5). For M>1 we start
from n=2 and we evaluate the probabilities Pr(S(l,n)=i/f1=1,f§=2)
and Pr(S(l,n)=i/f1=l,ff=2) for i=0,1,...,n based on expressions
(6) and (7). Then, we perform similar computations for n=3,4,...

up to n=M. Finally we end up having computed the probabilities

Pr(S(l,M)=i/f1=l,fi=1) and Pr(S(l,M)=i/f1=1,f§=2) for

e
PIER | AR
. )

e

Once we have computed Pr(S(l,M)=i/fl=1,f§=l) and

L4

P,

Pr(S(l,M)=i/fI=1,f§=2) for i=0,1,2,...,M ,we can find Pr(S(1,M)=i)

for i=0,1,2,...,M through formula (4). As a result we can compute

PR
S ln e x

P, (2) via formula (1).
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The same methodology applies when K>3. Hence,

Pr{s(l,M)=i]= E E Pr(s(1,M)=i/f) —sl,..., 1 l) a X (8

s *1
Furthermore, a proposition and a Lemma, which are similar to
proposition 1 and Lemma 1, can also be stated for every K>3. What
makes the method more complicated, as K increases, is that the
number of events, on which Pr(S(l,M)=i/fl=sl,...,f?=s§) depends
on, increases as well. For example, when K=3 the probability
Pr(S(l,M)=i/f1=si,fi=s§,fi=sg) depends on the following four

events:

P—'N

s1 3
i)s.=s S,

=N

S I 1, 3 1, .2 1_3
or ii)s;=s, and sl#s1 or sl#s1 and s,=8;

s ey 1 2 1 2 3
or 111)51#51 and sl#s and s]=s]

. 1 2 1 3 2, .3
or iv)s,#s] and s,#s, and sl¥s1
Nevertheless, once the distinct events, on which the

s s . K
probability Pr(S(l,M)=1/f1=sI,...,f?=sl) depends on, have been
correctly identified, recursive expressions, similar to

expressions (5) through (7), can also be written for every K:23.

Consequently, following the same methodology presented in case 1,

one can compute pe(K) for K23.
Numerical Results.
In Table 1 we have included pe(2) and pe(3) for g=10,25 and

50 and for the (31,7),(31,15),(31,23),(63,15),(63,31) and (63,47)
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Reed Solomon (RS) codes. In the same table, we have also included

NN ]

ﬁé(z) and 5é(3), where 5E(K),Kzz, corresponds to the packet error

g

probability induced by our spread spectrum system under the

assumption that the byte errors of packet # 1 are independent.

S A

From table 1 we can make the following observations.

Lo
()

b 1) 5;(2) is an upper bound of pe(2) and ﬁé(B) is an upper

n

bound of pe(3) for most entries of table 1. .

(P Sal gy

\,':-. e x's

2) 1P (2)-B (2)1 /B (2) and |p_(3)-F (3)I /B (3) are smaller

b than one for all entries of table 1.

»

We will see, in the next section, how observation 2 will be
helpful in evaluating the performance of our spread specrum
F systenmn.
Note that if K users are present in a slot then, :
3 B, (K)= Z G eyt (1-p 1™ (20)

i=e+1

L
.‘,‘.fio". DALl

where Py, (K) is the byte error probability given K. It is easy to

)
# show that 3
K-1 ’
Py (K)= 1-(1-2/q) (11) %
N
o,
where g is the number of frequency bins in the frequency spectrum. j:
A
p .
ance evaluatio e ad c system l;
hat
‘ Suppose that the input packet arival process per slot is -
Poisson with intensity s. Then, let us define (as in [4])
»
8
PR P S R NN
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2]
qe(s)=z e™® sf/k p o) (12)
K=0

to be the average packet error probability indﬁced by our spread

spectrum network at input rate s (note that pe(0)=pe(1)=0). We

also define (as in [4]) the maximum average interference level

that can be accomodated at a given packet error probability v by
s*(v)= max(s: qe(s)sv) (13)

Clearly the value of s*(v) depends on the number of frequency
slots q and the code rate r=k/M (k=number of information bytes,
M=total number of bytes in the code). If we account for the
expansion of bandwidth induced by q and r, then we can define the
normalized maximum average interference level as

s¥(v)= r s (v)/a (14)

Let us also define,

@
ae(s)=§ &7 Kkt b, (1) (15)
K=0

(note that ﬁé(0)=ﬁe(1)=0)
3*(v)= max({s: qe(s)sv} (16)
and T (v)= r ¥ (v)/q (17)

According to observation 2 of the previous section the ratios
lpe(Z)-ﬁé(2)|/§é(2) and |pe(3)-§e(3)|/3e(3) are smaller than one.
We can now state a conjecture.

Conjecture : |pe(K)-5é(K)|/§é(K)s 1 for K>4.

If this conjecture is true, and we find s such that

g (s) s v (18)

1 *
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then the same s guarantees that

do(s) < 2v (19)
The above discussion indicates that we can use QQ(S) and
g*(v) as reasonable estimates of the performance of our spread
spectrum system, provided that the above conjecture is true. It is

worth noting that aé(s) and §*(v) are easily computable.

5. Conclusions.

We have described (section 3) a method of computing the
packet error probability, pe(K), induced in a spread spectrum
system which utilizes first order Markov frequency hopping
patterns. We have also computed pe(K) for K=2 and K=3. Then, we
made some comparisons between pe(Z) and 5;(2) and between pe(3)
and ﬁe(3); 5é(K), K22, was defined to be the packet error
probability induced by our spread spectrum system if we assume
that the byte errors are independent. Based on these comparisons
and an educated conjecture we have evaluated the performance of
our spread spectrum system (section 4).

The consideration of a slotted channel in section 2 is not so
restrictive. The methodology of section 3 and the discussion of
section 4 are still valid for the unslotted channel, provided that
we resort to an upper bound for the packet error probability.
Consider the transmission of a given packet in the unslotted
channel, and consider a second situation in which it is assumed

that the interference level is constant and equal to the maximum

~
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number K* of interfering transmissions that take place at any time {
2

during the transmission of the given packet in the unslotted o
system. Clearly, as table 1 also indicates, the packet error 3
4

probability for the second system is larger than for the first. Rt
Hence, pe(K*) of table 1 will be an upper bound of the packet m
error probability of the unslotted system. Y
Furthermore, the pessimistic assumption that a byte hit -4

.

results in a byte error need not be made either. More optimistic }
assumptions described in [5] section IV, where thermal noise is S
also present, can be incorporated in our model too. They will ff
>
simply make the presentation of section 3 more complicated. :'
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Appendix A
We will first prove Lemma 1.

1 2 .
f.=(f. : H 1l
£ (fj.fj) Jj2

as in (3). Furthermore, we denote

We will show first that

Pr(£5=85/£5 185 s+ £1=8)) =Pr(£5=8/£;_

for any Sl""’—j

I= { (11,12): i

(A.3) is equivalent to

I_

1) Pr(fJ -1= _] IEEREE

e 1.1 .2 2 1
""’il_gl)_Pr(fj'Sj’fj'sj'""f;
independence of (f;

—s ) Pr(f2—5§

Pr(f.=s.
r(_j S5

1
—Pr(f l oco'fl_ 1)
1 £l 1 1
ij_l,... 21 l) Pr(fJ 1-zj
sj_l,..., —sl) Pr (f] -1 sJ

1921} and

1
J,...,
1

-AU-A

=Pr(f.
r( J/fJ -1

/fJ -1

\_l

Pr f =
( =S

2 2]
j_1,...,f1=sl) Pr(f

—Pr(f =S /f

2 . )
i-1 7)-1
Pr(fj_1=s -17S5-170 00

independence of (f?;le} and (f§

=Pr(§j ) Pr(f

J11"'! _'IIJ 1_J

1=1,...q, iz=1,...q }) and for any

Let us now denote

(A.1)

(A.2)

(A.3)

l"j )

belonging in the state space I (in our case

j22.

(A.4)

1 2_ 2

f —52};

ij21) and (fj:jzl)

£1=st)
= L 1 1
f —s%’//

;j21) Markov chains

1""’
f
( J

2__2

f1=s1) 7

1j2l)

_1)/Pr(E5_=85_;) (A.5)

The series of steps in (A.5) prove (A.4),The stationarity of

(ij:j>1) follows from the fact that

Pr(f.=s. /fJ -1785- -1)=(q-1)

=3 73

12
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(A.5) and (A.6) prove the Lemma. We will now prove

proposition 1.
Let us first denote by, T1(M), the following statement.

1 2 2 . 1__2 .
1, 1), with $,=8,, 18
1 and si, for every i such

"The probability, Pr(S(1,M)=i/f=s),f
independent of the actual values of s

that 0gigM.™

and by, T2(M), the following statement.

"The probability, Pr(S(l,M)=i/f1=s1 2_ i), with sl#si, is
independent of the actual values of s1 and 52

1 1 for for every i

such that 0OgigM."

We will prove, by induction, that T1(M) and T2 (M) are true.

For M=1 we have:

11 2 2
Pr(S(1,1)=0/fl=sl, 1—51) =0 (A.7)
1.2
_ 1.1 .2 2
Pr(S(l,l)—l/fl—sl, 1 sl) =1 (A.8)
B
21771
Pr(s(1,1)=0/£) -s1 fi :)=
2

,sl#sl
_ 1.2 1,.,2,% 1 .2_2
<Ei(f1#fl,f1¢f2/fl-sl,fl-sl)
see figure 1

d

1,62 V42, 1 1 .2 2.2 2 _ 1 2 20

= E : Pr(flffl,fl¥f2/fl—sl,f1=sl, s5) Pr(f 52/f =s,,f1=s)) =

2_,

8,
.52#52 s #é
=(g-2)/(g-1) (A.9)
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Similarly, we can show that

—1/e1og) 2.2 _ L 1,2
Pr(s(1,1)=1/f,=s,,£]=s])=1/(g-1) ,sl#sl

(A.7),(A.8),(A.9) and (A.10) indicate
are true. Suppose that T1(M) and T2 (M) are

us now denote

Cy i, 1 2 2
bl(l)—Pr(S(l,n 1)—1/fl—s1/f —sl)
L c1y=i/eV=s! £2262) .ocicne
b2(1)—Pr(S(1,n 1)—1/f1—sl, 1= l) :10<ign-1,
We will now show that T1(M) and T2 (M)

first note that

1.1 2 2
Pr(S(l,n)=O/f1=sl, 1—51) =0 (A.13)
L1 2
is,=8,

Furthermore,

_a,el_ 1 2 2
Pr(S(l,n)-l/fl-sl,fl—sl)—
's1=52 0<ign
i Rl B4 =

LOAAA ‘Al I Bl S AR N

(A.10)

that T1(1) and T2(1)

also true for M=n-1.Let
1

s =s2
171
2

1
$,7s)

(A.11) and
(A.12)

are true for M=n.We

zi::z : _ o2 N 1 22
Pr(s(l,n)= 1/f Sl’ 1 sl,f2 S, f2 2)

s =1 s =]

1 2 2 1 .2 2

Pr(f2=sz, 2/f l'f1=sl)=

:E : :E : et 2.2 1 1 2 2 1y =2
Pr(s(i,n)= 1/f 51' =s,,f,=s,,£,=5;) (g-1) "+

s -1 s —l

2 1
s,=8, and szaﬁs1

E : § : _ 1.1 2 2 g2
Pr(S(l n) l/f Slp 1,f2—52,f2—52) (q 1) +

s, —1
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q q

+Z Z Pr(s(1,n)=i/fl=s), f2=s2 fl=s] £2=s2) (g-1) %+
s)=1 s2=

sg#s; and sgfsl
d q

+Z Z: Pr(s(1,n)=i/f)=s), £2=s2 £1=s) £2=52) (q-1)72-
s;= s§=l

sgfs; and s§=sl

(we cannot have sl=s§ and s§=sl)
q q

=Z Pr(S(2,n)=i—1/f;_=s11,f]2_=s§,f;=s;,f§=s§) (g-1) "%+
s;=1 s§=1

s§=s; and sg#sl
q q

+Z Z Pr(S(2,n)=i-l/f1=sl,f§=s§,f;=s;,f§=s§) (q-l)‘j=
s;=1 s§=1 (ij:jzl) is a Markov chain (Lemma 1)

s§#s; and sg#sl

q

1-— —
s,=1 s,=
2 1 2,1
s,=s, and szfs1
q q

z : z : i 1_1 22
+ Pr(s(2,n)=i l/fz—sz,fz—sz)

1_ 2_
52—1 Sz—l

2, 1
and s.fs,

z i 1__1 .2 2 _1y =2
Pr(s(2,n)=1 1/f2-52,f2—52) (g-1) “+

(q—l):j=

(gj;jzl} is stationary (Lemma 1)
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q q l':“
2 : : 1_1 _2_2 -2 N
= Pr(S(l,n-l)—1-l/f1=sz,f1=sz) (g-1) “+ 7
1_ 2_
52—1 52-1 "
2_ 1 241 i
s.=s, and s #E s
) 271 W2
b
q q :r
. 1_1 . 2_ 2 -2
+E E Pr(s(i,n-1)=i-1/f =s,,f=s%) (q-1) (A.14) e
1_ 2_ ANK
52— 52—1 fij
2, 1 2, 1 d\
52#52 and szfs1 T
We now make the following observations. ..
.. 1 2 . 1_2 . _ el
0.1) If ;1 is in state (sl,sl) with sl—sl, then iz can be in g-1 ﬁﬁ
different states (s;,sg) with the properties s§=s; and s§#s1, ;ﬁ}
1 A
independently of the actual values of sl and si. L
A
| L 1 2 : 1_2 . e
| 0.2) If il is in state (sl,sl) with sl—sl, then £2 can be in }:}
| (g-1) (gq-2) different states with the properties si#s; and :QE
| N
| 1, 2
N sg#sl,lndependently of the actual values of 51 and S,
E From (A.14), 0.1 and 0.2 we conclude that e
Pr(s(1,n)=i/f)=s!, £2=s2)=b. (i- -1 2 2z
( ( ’ = / 1—511 1-51)_ 1(1 1) (q )/(Q“l) + :.I"
;8= 0<i :
’ 1—51, Sn :_
. 2
+b, (i-1) (g-1) (g-2)/(q-1) (A.15)
Similarly, we can show that
1.1 22 2 2 '
Pr(s(;.n)=0/fl=s1,f1=s1)=(q-2) /(9-1)° b, (0) (A.16) a7
L1 o~
is,#s,
el 1 .2 2 2 . p;
Pr(s(1,n)=i/f;=s,,f1=s1)= (q-2)/(q-1)° b, (i)+ ;
1,2 . .
is,#s], O<i<n Tl
2 S (3 .:.‘.:.
+(g-1)/(a-1)% b, (i-1)+ (a-2)%/(g-1)? b, (1) (A.17) e
S5

| R A
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and, =
1 1 2 2 2 :r:
Pr(S(1,n)=n/f;=s,,f,=s,)=(q-1)/(q-1)" b, (n-1) (A.18) I
1, 2
.sl#sl -

Expressions (A.15) through (A.18) prove that T1(M) and T2(M)
are true for M=n as well. Hence, by induction, T1(M) and T2 (M) are
true for every M:21l.

Furthermore, the induction procedure above and in particular

expressions (A.15) trough (A.18) verified the validity of -

equations (5) through (7) of section 3.
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Table 1

(31,7) RS code

q P, (2) Pa(2) 1Py (2) =P (2)1 /B (2)
10 0.78507246 0.77127123 0.17894133D-01
25 0.93451075D-01 0.97636106D-01 0.42863559D-01
50 0.66080673D-02 0.72908919D-02 0.93654467D-01
(31,15) RS code
q Pg(2) B (2) 1P, (2)-B (2)1 /B, (2)
10 0.13915048 0.15076248 0.77021816D-01
25 0.36450112D-03 0.53081917D-03 0.31332336
50 0.14188960D-05 0.23669732D-05 0.40054412
(31,23) RS code
q P, (2) B, (2) 1P, (2)-B,_(2)1 /B, (2)
10 0.25728328D-02 0.43874633D-02 0.41359445
25 0.9370620D-07 0.28409390D-06 0.67015764

.,
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Table 1 (continued)

(63,15) RS code

q P, (2) P, (2) 1P (2) =B, (2)1 /B, (2)
10 0.91745546 0.90631180 0.12295613D-01
25 0.58637826D-01 | 0.62530221D-01 | 0.62248220D-01
50 0.74395697D-03 | 0.87602105D-03 | 0.15075445
(63,31) RS code
q P, (2) P (2) 1P, (2) =B, (2)1 /P (2)
10 0.10016353 0.11197709 0.10549979
25 0.32382994D-05 | 0.62966015D-05 | 0.48570678
50 0.11704D-09 0.29755D-09 0.60665434
(63,47) RS code
q P, (2) B, (2) 1P, (2) =B, (2)1 /B (2)
10 0.10541485D-03 | 0.26357027D-03 | 0.6000503
25 0.58D-12 0.445D-11

0.86966292

=
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Table 1 (continued)
(31,15) RS code
® q P, (3) B, (3) 1P (3) =B, (3)1 /B, (3)
10 0.85167393 0.84020289 0.13652702D-01
25 0.35959153D-01 0.39002482D-01 0.78029111D-01
» 50 0.38309009D-03 0.45761967D-03 0.16286358
: (31,23) RS code
® q P, (3) B (3) 1P (3) =B, (3)1 /B, (3)
L0 0.29646470 0.30376087 0.24019453D-01
5 0.25272762D-03 0.35074331D-03 0.27945134
. 50 0.13704329D~06 0.22482071D-06 0.39043298

(63,31) RS code

lc q P (3) B (3) 1P, (3)-B,(3)1 /P, (3)
10 0.95754921 0.95027964 0.76499271D-01
25 0.10935348D-01 0.12442345D-~01 0.12111840

e 50 0.35134889D-05 | 0.48095548D-05 | 0.26947731

(63,47) RS code

# q P, (3) B, (3) 1P (3) =B, (3)1 /B, (3)
10 0.30594667 0.31322755 0.23244998D-01
25 0.14916148D-05 0.26688242D-05 0.44109664
. 50 0.115D-11 0.286D-11 0.59790209
.
.
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Science. Within these disciplines there are well equipped laboratories for conducting highly specialized
research. All departments offer the doctorate; Biomedical and Materials Science grant only graduate
degrees. In addition, courses in the humanities are offered within the School.
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student enroliment of about 16,400), also offers professional degrees under the schools of Architecture,
Law, Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College
of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant
to the engineering research program. The School of Engineering and Applied Science is an integral
part of this University community which provides opportunities for interdisciplinary work in pursuit
of the basic goals of education, research, and public service.
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